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Quantitative characterization of pore-scale disorder effects on transport
in “homogeneous” granular media
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Breakthrough curve@BTC) of a passive tracer in macroscopically homogeneous granular maigvills
sorted, unconsolidated sands or glass beagse measured in a series of column experiments. The early and
late arrival times are observed to differ systematically from theoretical predictions based on solution of the
advective-dispersion equation for uniform porous media. We propose that subtle and residual pore-scale dis-
order effects in the porous media can account for these observations. We determine an ensemble-averaged
distribution of particle transfer ratgbased on a master equation for the local flux-averaged concenjration
which incorporates these effects, and utilize it to calculate BTC that are in excellent agreement with the entire
series of observations. Theoretical prediction of the dependence of the effective macroscopic parameters on
measurable quantities is also in excellent agreement with the observations.
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[. INTRODUCTION flow paths and non-Fickian tracer transport even in small

Since the seminal study of Tayl¢t], the transport of a 2?1%{/?/}1 CTSQK,QSQ eg Lé.s,IyHogfz?r?ggtdaI(.:c[):lgl]Jrggdeoxg@ggtn;sl. was

passive tracer in macroscopically homogeneous granular mgs) - Similar behavior was demonstrated in meter scale flow
terials, under an advecting steady flow, has been treated kg5 by Silliman and Simpsof5] and Levy and Berkowitz
analogy to the classicaFickian) diffusion problem in a ho-  [6]. A recent reanalysif7] of the data reported if2], as well

mogeneous fluid. As a consequence, the advection-dispersig® from other experiments on tracer transport in small scale,

equation(ADE), natural (‘homogeneous’ soil columns[8,9], further exam-
p ined and quantified the occurrence of non-Fickian transport.
n—c(y,t) == V -[qc(y,t) =D V c(y,t)], (1) We argue that in “uniform” porous media, the ADE
it framework may provide a good description of the mean ar-

has long been regarded as the correct model to describe thrilg al time (which correlates _to the mean Stokes flaw), but
kind of transport. Ir(1), ¢ is the resident fluid concentration, cannot account for a precise description of tracer transport

nis porosity,q=n(v) is volumetric fluid flux per unit area, (e.g., early and late tracer arrival timehie to fluctuations in

(v) the average fluid velocity,is time, y is distance, an® mean behavior. The key is_su_e is to recognize f[hat short-range
' ’ ' “geometrical” heterogeneity in a porous medium leads also

is the hydrodynamic dispersion coefficient. .. to short-range spatial variability in the microscopic velocity
While the ADE has been documented to provide “aver-g|q (y) of the liquid that carries the tracer. These latter

age,’_’ Iarge-sqalc-_z descriptions of tracer migration in POrOUStfacts are eventually “averaged out” in, e.g., sufficiently
media, non-Fickiaror “anomalousj transport patterns are long columnsl of granular mattert. >>>d... whered,, is a

observed frequently. Such patterns are usually distinguishe aracteristic diameter of the individual grains. However, in

by early arrival and late time tails in breakthrough curves g
. : . a large range, where>d,,, these fluctuations can produce
which differ from those described by the ADE. Anomalous,, measurably systematic deviations from the BTC de-

disper_sion of a passive tracer in porous media has often b_‘?es%ribed by the ADE.

associated W|th.the presence of large scale heterogeneities. In the present work, we have measured the transport of a
However, Scheidegger] aIready. noted, nearly 45.years assive tracer in macroscopically “homogeneous” granular
ago, that as compared .tolcalculauons from thg classical AD aterials, for a range of steady advective flow rates and for a
U‘Ode_" systematic dgwano_ns were observed in the early Aseries of different well-sorted, unconsolidated sands and
rival imes _anf? long-time ta"f of breakthrough curnégC) glass beads. We demonstrate that even microscopic changes
measured in “*homogeneous” sandstones. in the velocity distribution—in this case, given by relative

The qu%§t|on of tge scalgd or ((j:c?‘rr]]dmons under"\;\;]hlchf at:hanges in the random fluctuations around a mean liquid
porous medium can be considered "homogeneous thereto elocity in a macroscopically homogeneous porous

arises naturally. For example, the existence of preferentigl, i \m—can lead to distinct, quantifiable patterns in the

early arrival times and long-time tailing behavior. We also
show that this behavior cannot be quantified by the classical

*Electronic address: andrea.cortis@weizmann.ac.il ADE model. It is important to note here that we use exact
"Electronic address: youjian.chen@weizmann.ac.il solutions for the ADEand our proposed modehat account

*Electronic address: harvey.scher@weizmann.ac.il explicitly for the length of the column and the appropriate
SElectronic address: brian.berkowitz@weizmann.ac.il inlet and outlet boundary conditions. Therefore, our fits with
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the ADE are not affected by fitting artifacts of the classical The flow rate of the injected water and tragspdium
analytical ADE solution for an infinite length column. chloridg was controlled by a peristaltic pumpMaster
We approach our theoretical analysis of the subtle effect§LEX, USA) together with a flow dampener. A T joint con-

of pore-scale disorder within a framework that has beernected salt water and fresh water reservoirs, which enabled
highly successful in accounting for anomalous transport iran immediate switch over between the different water sup-
strongly heterogeneous media—the continuous time randomplies without interrupting the flow. In each experiment, fresh
walk (CTRW) formalism [10—12. In this context, we have Water was used to initiate and stabilize the flow, and to cali-
developed[13] generalized transport equations with the _brate the b_ackground concentration. Salt water was then in-
CTRW theory, and shown the ADE to be a highly Con_Jected to displace the fresh water and to determine break-

strained subset of this theory. The CTRW is characterized b{irough curves. The effluent conductivity was measured over
U(s,1), the probability rate of a local displacemesat tran- ime with an electrical conductivityEC) meter(TWIN, Ja-

sition timet. In many instances, it is possible to assume tha an, with maximum measurement error of 1%, and then
o y - ' possibe onverted to tracer concentration values by using calibration
the transition rate probability can be applied in the uncouple

. B urves. All tracer experiments were run until the effluent
form y1s,t)=p(s)y(t), wherep(s) is the probability distribu- 5y ctivity was steady and equal to the inflow concentra-

tion of the length of the jumps anf(t) is the probability rate  tjon, at a constant room temperature of 23 °C. In all experi-
for a transition timet between sites. ments, fresh water was prepared from boiled, deionized wa-
In this contribution, we consider the determination/af) ter; salt water contained 500 mg/L NaCl.
for the mildly disordered porous media used in our experi- To maximize the resolution and accuracy of the measure-
ments. We develop a physical model based on a master equaents, “dead volumes” of fluiccontaining both tube volume
tion (ME) for the flux concentration, containing the explicit and inlet volume of columnwere accounted for in the treat-
pore-scale transitions. In Sec. |l we present our experimentanent of the measurements. For this purpose, a neutral-
results and the comparison to the ADE predictions. In Seccolored dye was injected to estimate the dead volume be-
Il we derive they(s,t) we use in the generalized transport tween source water switchover and column inlet: the time of
equation computations of BTC, and in Sec. IV we compardlow through this switchover was deducted from the mea-
these results to the experimental ones. sured breakthrough times at the column outlet. The outlet
volume of the columns was also minimized to increase the
accuracy of the conductivity measurements of the effluent.
Il. TRANSPORT EXPERIMENTS IN HOMOGENEOUS The colored dye was also u_sed to ensure that fluctuations in
GRANULAR MATERIALS the flow rate could pe considered negligible with regard to
the outlet concentration measurements.

We performed a series of tracer breakthrough experiments Figure 1 shows a typical BT(hormalized flux-averaged
in a one-dimensional1D) flow field, on uniformly packed concentratiorj versus timet) for a short column filled with
columns of two different lengths. The filling material was fine sand. It can be observed that while the mean arrival time
well-rounded quartz sand with minimal surface coatingsiS approximatively matched by the fitted ADE model, the
(UNIMIN Corporation, USA. Three grain sizes were used, predicted early and late arrival times deviate from the data.
namely fine, medium, and coarse sand, with average graihhese deviations are found to be systematic and of compa-
diameters of 0.231, 0.532, and 1.105 mm, respectively. Glaggble order of magnitude for the entire set(48) short col-
beads with an average diameter of 4.0 mm were also usedumn experiments. Also shown in Fig. 1 is a fit to the data

The experiments used two “short” colummhe of length ~ using a CTRW formulation to be derived and discussed be-
19.70 cm and 2.478-cm internal diameter, and the other dpWw. Similarly, Fig. 2 shows a typical BTC for a long column
length 19.85 cm and 2.512-cm internal diamgtand two  filled with coarse sand. Here, it is evident that for this par-
“long” columns(with lengths 101.0 and 101.2 cm, and inter- ticular column length and packing, the ADE model correctly
nal diameter of 2.785 cmThe inlet and outlet ends of each predicts the Fickian evolution of the experiment.
column were separated from the porous medium by thin ny- From this analysis, we conclude that there is a transition
lon meshes with hydraulic conductivity larger than those ofbetween the anomalous behavior observed in the short col-
the sand and glass beads. Small open volumes between tHBIN experiments and the Fickian behavior characteristic of
meshes and the column closure caps served to promote tradgg long column. These considerations on length scales must
mixing and to further dampen subtle pulses in the injectedf course be taken in relative terms. The ratio of the total
liquid caused by the peristaltic pump. length of the column to the diameter of the characteristic

Each sand packing was carried out under saturated condilisorder(the diameter of the graipss equal toL/d,,=870
tions, with (sequentially small amounts of sand being for the short columrfine sand experiment, and it is of the
poured through water and stirred with a thin stick to avoid airsame order of magnitude for the long colurtuoarse sand
entrapment. In addition, the sand was compacted and thexperimentL/d,=909. The degree of the heterogeneity is
column was shaken frequently during the process of packingherefore comparable for the two cases. However, as the
The porosity was controlled by weighing the amount of sand/olumetric fluid fluxes are also comparabi®=6.717
packed into a given column volume, allowing for different X 1077 and 7.8760< 10~" m*/min for the short and long col-
densities of the sands. This methodology ensured that thémns, respectively the residence time of the tracer in the
columns were as uniformly saturated and as homogeneous kg column(t~ 265 min is more than five times larger than
possible. that for the short columrft~53.7 min. The relative resi-
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FIG. 1. Comparison of measured vs fitted
breakthrough curves for a typical short column
‘ ‘ : experiment. The quantityrepresents the normal-
e B s oo ized flux-averaged concentration. Dots: measured
0 - - : chloride breakthrough curve, for a fine sarmf;
=0.231 mm. Measured porosity=0.3228. Col-
umn length L=19.85 cm. Section area=4.956
X104 m2. Volumetric fluid flow Q=6.717
X 107" m®/min. Dashed line: best ADE model
fit: (vy=4.917x10° m/min, = D=3.2363
X 10°° m?/min. Solid line: best CTRW fitv,,
=4.0389x 10" m/min, D,=1.1601
X107 m?/min, 7=0.9212. The lower figure
shows the quantityl-j) in logarithmic units to
emphasize the long-time tail.

1070

t [min]

dence time is ultimately what governs the transition fromities in the pore volume. It is expedient to consider local
anomalous to a Fickian behavior. A rigorous, quantitativeaverages of the key quantities and retain a statistical charac-
treatment of this anomalous behavior and the evolution toterization of these fluctuations. We consider a master equa-
wards Fickian behavior is described in the next section.  tion for the flux-averaged concentratiéky,t)=v(y)®(y,t),
where®(y,t) is the normalized resident concentration,

= ,, 0 ,t il ! 6 ’,t y 2

A. Derivation of the y(t) y y

The complex nature of the paths traveled by the tracer isvherew(y,y’) is the transition rate of tracer “particles” from
governed by the fluctuations of the Stokes velocity figl) ~ y’ to y in a single realizatioriunits oft™!) and the sum over
around its average valug(y)) due to the local heterogene- vy is, in principle, over the pores of the fluid volume. The

1

0.9
0.8 FIG. 2. Comparison of measured vs fitted
0.7 breakthrough curves for a typical long column
experiment. The quantityrepresents the normal-

] 0.6 ized flux-averaged concentration. Dots: measured
0.5 chloride breakthrough curve, for a coarse sand:
0.4 dy=1.105 mm. Measured porosity=0.3262.
03 Column length L=101.2 cm. Section area
) =6.0917x 10* m2. Volumetric fluid flow Q
0.2 =7.8760x 1077 m®/min. Dashed line: best ADE
0.1 model fit: (v)=3.8072x 10°3 m/min, D=2.7793

0 X 1076 m?/min.
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procedure to account for the statistics of the local fluctua- ) s

tions requires the use of a local average over some volume (y)o(y +9))=(v(y) >eXF<— 5) (8)

Vear=(4/3)mr3,  where  (f(y))=1/Veafy,,fy+s)ds.

Clearly, r is proportional to the characteristic length of the We assume that the diffusion lengih~ 6. Substituting(8)

spatial particle transitiong,==¢p(s)s. This coarse-graining into (7) we have

procedure amounts to shifting the length scale from the in- a o b S

terpore distance to th¥ radius,r, and to designating an - a(@(y,t» = (@)(y,t))(§<u(y)>?0 + __)2 eXp<— _),
S

effective site densitysee below. The probability ratei(t) is 6t 6
related to the derivative of the ensemble-averaged part of the (9)
outgoing contribution in the ME for the concentrati{see,

e.g.,[14]]. where the ratioay=(v(y)?/{(v(y))? is known as the “static

The physical model is determined by the expression fotortuosity” [15-17 and for three-dimension&BD) flow in-
the transition ratev(y’,y) which we write asn(y+s), where  side a straight tubey has the exact value 4/3. We assume
sis the distance to the appropriately averaged gites con-  that the value ofw, for our macroscopically homogeneous
tained inV,) of the configuration. The particles are trans- porous medium remains of the order of 4/3, and we incor-

ported by the flow, hence it is reasonable to assume porate this uncertainty into the factar
5 We can now solve the differential equation {@¥(y,t)) to
av(y+s s i
W(y+s):§%+6_t_ex%_ X)' (3) obtain
_ a@y) b p( §>
with X a characteristic diffusion length, ané characteristic O.1) = exp[ t( 6 ¢ " 6t/ Es‘ ex AR

“relaxation time for diffusion.” Note that the diffusion con-
tribution decays exponentially with the distance from the (10)
considered pointFickian diffusior). We incorporate all the \\e define the nondimensional time= (t/1)7/6 and the
remaining uncertainty in the expression farin the two  «jisorder parameter’y

numerical constanta andb, which are determined experi-

mentally. The factor 1/6 is introduced for convenience to a(v(y)) ‘b

simplify the forthcoming algebra. Further discussion on the Yy 11
connection betweew(y+s) andv(y+s), and on the origin of o v
the 1/8 coefficient, is given in the Appendix. wherev,= {/t. The factor»/6 thus represents the natural
Averaging the outgoing contribution of the ME §8), we  time scale of the process.
can now write With the above definitions, we can rewritg0) as
d s
~ O u(y) = 2 (O, Do(y)w(y+s),  (4) O(y,7)= eXp{— 7> expl - 5)] : (12
S S

where we further assume that Taking the ensemble average @(y, 7)) (indicated by the

operator{ }) over all possible effective sites

Oy, ho(y)) =(O(y,Hh)Xv(y)) (5
(O, M} = {exp[— 7S expl- 3/5)” 13
and N
a b S ields
O.H| vyvly+s) + v(y)—_exp<— —) ) Y
8¢ 6t \ s ds, N
a b s {<(y,r)>}=J 71 f EVE exp[— 7, exp(- s-/é)]
=(0(y,1) g(v(y)v(y+8)>+<v(y)>6—t_ex I v v i=1
(14
(6) _ _ :
) where the volumé/ is the total volume, i.e V=NV, with
We can then writ¢4) as N being the number of effective sites. The definition of an
q O.0) a effective site is one that is separated on average by
- —(O(y,t)) = LE {—<v(y)v(y+ s)) (3Vgen/ 4m)Y2 from a neighboring one.
dt (u(y) 5 | 8¢t Rewriting (14) as
b s 3 3« N
—exd -2 1. 7 d°s d
Hog exP( x)} @ ewmy= f X j ENT exii- rex-s/a)l,
\% \4 \% \% i=1
The averaging volum&, is chosen to also contain the (15)
fluctuations of the local Stokes velocity field, which is speci-
fied by & the correlation lengtliwhere 6<r), and adding and subtracting 1 on the right-hand side gives
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N

{ey,m=11

i=1

3.
[l—f d—s(l—exp(—rexp(—slé)))}
v V

(16)
We then multiply and divide by to get
N
N1
«ev.m=11 [1 Ny
xf Ps(1 - exp— Texp(- silé)))] .
\%
(17)

At this point we assume the ergodic hypothesis for which all

the sites are equivalent to get

KOy, 7)) = ll =l i 1- e - re] - E)MN

(18)

Taking the limit to the number of sitd§— o,

(0. = exp[— i i 1- x| - re] - g)))}

(19

We consider an isotropic system and we make the change of

variablesx=s/ 4,

{0y, 7))}
exp[— 4moN fx (1 - exg— rexp(- x)))xzdx] .
0

%
(20

PHYSICAL REVIEW E 70, 041108(2004)

{(O(y,n)} = exp[— gfx (1 - exg— rexp(- x)))xzdx] .
0

(22)
The integral in(22) can be expressed &%4]
pr( o
Oy, )} = exn[— 55(— prelUApCh r))a:j )

where y is the incomplete Gamma functigi8]. Equation

(23) is equal to
7':| :| , (24)

where F is the generalized hypergeometric function defined

1,1,1,1

«oly, T)>}:ex4:_ 7]7'4':4[2 29 2:_

as
a3,8y, ... 8y }: - (al)k(a2)k---(ag)kx_k o5
Fal bbb | =2 Byuibo. bkd” 22

and (a)=T'(a+k)/T'(a)=a(a+1)...(a+k-1) is the Poch-
hammer symbol, also known as the rising factorial.

The normalized transition probability(r) is defined by
[14]

_d®(y. 7}

dr (26)

6t
—un) =
7
Developing the derivative i26) we obtain

6t 1,1,1 . [1,1,1,1__ }
— 1) = m5F3 29 2;— T|€7 4420202277 (27)
77 1 1

Anticipating the outcome of the experimental results, weThe hypergeometric functiong-; and ,F, are always posi-

make theansatzthat the radiug of the sphere of volume
V.e1=(4/3)mr3 is proportional to the correlation length
through the nondimensional rescaling timé6 defined fol-
lowing (11), i.e.,r=66/ 5. As discussed earlier, the radius
is proportional tof, justifying the introduction of they pa-

tive and tend for small times to the value 1, reducifig) to

a pure exponential. The limits of these functions for o
are also constants equal #/12 and{(3)/3, for ;F; and
4F4, respectively, with the function defined as in Abram-
owitz and Steguri18]. We recall that the spreading behavior

rameter. It will be seen from the experiments that the fluidis purely Fickian when the/(7) is a pure exponential. Thus,

velocity (v) is of the order of the transport velocity,, i.e.,

Eq. (27) can actually account for the transition from a purely

n~ 1. The averaging radiustherefore encompasses severaldiffusive regime(at extremely small times when the tracer

correlation lengths.
We thus rewritg(20) as

473N <i7>3

{<®(y,r)>}=exp{— v s

XJW (1 - exp(— rexp(— x)))xzdx} . (2D
0

In the range 0.8 #<<1.5, we can use the approximation
(9/6)°=1/6(n+2.3 with a relative error of X103, We
also incorporate the constant 2.3 into the definitiorbah
(11). From the definition ofr we have thatV=NV,y
=N4/3#r3, hence

does not yet “see” the microscopic heterogeneities around
the spreading sourgéo (eventually another “homogenized”
regime in which the length scales involved in the overall
transport are much larger than the correlation length of the
disordered porous system. The regime of most practical in-
terest, however, lies in the broad transition between these
two extremes in which anomalous transport prevails.

An illustration of they(7) behavior is given in Fig. 3 for
several values of the; parameter. We note that(7) ap-
proaches an exponential behavior asincreases, whilst
smaller values ofy are associated with systems with higher
degrees of disorder. In terms (f1), values ofy of the order
of unity correspond to a physical situation in whigh is of
the order of magnitude of the average pore veloGity

041108-5



CORTISet al.

PHYSICAL REVIEW E 70, 041108(2004)

10+1 F T T T T T T T T T T T T T T T T T \:
10+0 ----------------------------------------------
10—1 ,,,,,,
10—2 SEESRER IS IS SIIITE e e Y S
S 10-83 0 o R FIG. 3. Evoluﬂon of the dimensionless transi-
.5: tion probability(6t/ 7) ¢ 7) vs dimensionless time
L L it TSRk T 7in (27) for different values of they parameter.
10~5 TR T The dashed line represents the exponential limit
10-6 of the function foryp=1.5.
1077 e P P e LS SIS (SRR
7=15x10"* —*7‘ | i\ .
0—8 1 1 L1 1 L 1 Lol L1 1 L
1074 1073 1072 107! 10t® 10t 10*2 10+ 1p**
T
B. The generalized advection-dispersion T(u)
equation with memory
It can be showrj13,19 that the ensemble average of the 27 exp(l(a;,lﬂ z))
ME for the resident concentration can be written as a gener-  _ } 2
alized ME that is equivalent to a CTRW. Denrgz al. [20] “u -1 = -1 = ’

. : . exp(z)(z+ + 2u/(M +(z- - 2u/(M
showed that the CTRW formalism can be described effi- [exp2)(z+ (Moy) + (2= (Moy)]
ciently in terms of a partial differential equation with a (32)
memory term where

n[{uc(y,u)) = (co(yN]==M(u) V -[q,C(y,u) 1 Aua
z=— 1+ ~—l£ (33)
- D,V &(y,upl. (28) @y Mo,
The memory functioﬁ?/l(u) is Equation(32) is then numerically inverted to the time do-
~ main by means of an inverse Laplace transform algorithm
M(u) ~Tu (u) (29) [22,23. A series of plots for different values of the nondi-
1—E(u)' mensional parameten are given in Fig. 4, for nondimen-

where:b(u) is given by the Laplace transform ¢27) (u is
the Laplace parametgrand

1 1 1
4= =2 P(S)S=Nv,(y), D, ==, Zp(9)sS= a,q,,
t S t S 2
(30)
where the tensor
1
25 P(9ss

RS

has dimension of length. The Laplace transform of e
in (27) is evaluated numerically for all values ofusing an
adaptive Clenshaw-Curtis quadrature sche@g. In the
limit of () — e, then M(u)=const and(28) is formally
equivalent to the classical ADE ifl). This can be seen

(31)

easily by substituting the Laplace transform of the pure ex-

ponentialy(u)=(1+u)! into (29) to obtainM(u)=1.

sional velocity and dispersivity equal tq,/L=1, ande,/L
=0.05, respectively.

IV. DISCUSSION

We now analyze the 48 short column experimental BTCs.
Fitting numerical solutions 0f32) to these experimental
BTCs, we obtained independently the parametgr® ,, and
7 corresponding to theé[(7) in (27), and the parameteks)
and D for the ADE in (1) (i.e., the solution of(32) for

M(u)=1). Note that, as mentioned in the Introduction, Eq.
(32) is exact for the boundary conditions and system geom-
etry of these experiments.

In Fig. 1, we show a typical example of the fit obtained by
means 0f(28). It can be seen that the solution @8) with a
memory function defined by thé(7) in (27) captures all of
the “anomalous” featurgsn contrast to the ADE modghnd
also better describes the position of the mean arrival.

In Fig. 5 we plot the value of the disorder parameter
against the ratigv)/v,, for the set of 48 BTCs: it can be seen
that the prediction of1l) is clearly satisfied by our experi-

For a 1D system, given a constant flux-boundary condiynents. The fitted values af range between 0.8 and 1.5. This

tion at the inlet, i.e.IEKAv(é—av,&E/ﬂy):u‘l, aty=0, a
natural boundary condition at the outlet, i.6¢/dy=0 aty
=L =1, and an initial conditiorty(y)=0, Eq.(28) admits the
exact analytical solution

range of values is characteristic of a weak disorder. The re-
gression line plotted in Fig. 5 has a slope1.0071 and an
interceptb=0.1069. We note that the value af does not
show any specific dependence on the values of mean grain
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1

0.9
0.8
0.7 .
FIG. 4. Breakthrough curves solutions of
0.6 (32), where the quantity represents the normal-
0.5 ized flux-averaged concentration, using the
0.4 transition-probability functionyd(7) in (27), vs
0.3 nondimensional time=t»/t for different values
) of the disorder parameten, with v,/L=1 and
0.2 a,/L=0.05.
0.1
0
107!
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sal way on a combination of the aforementioned parameters, APPENDIX
for instance a= 8ky/ (nA2a.,), which for smooth porous me- o _ .
dia is typically in the order of unit§24]. The coefficient In the definition of then(y+s) the main dependence is on

carries the information on the diffusion contribution to the the fluid velocityv(y+s). However, this “forcing term” must
transition rates, so we expect to find different numerical valbe rescaled with a characteristic length of the spatial transi-
ues for different choices of the solute pure-diffusion coeffi-tions; this length depends on the assumed idealization of the
cient. porous medium. For example, for a medium consisting of a
The surprising robustness of the expressionlity indi-  network of pores and straight tubes, the lengtik a charac-
cates that the main dependence of thparameter is effec- teristic distance of the interpore distance, i.e., the length of
tively on the ratio of fluid velocity to transport velocity, the tubes. Because the rescaling is governed, ltlye depen-
(v)v,. The approximations made in the determinatiorof dence of the constaatis only on “averaged” quantities such
are consistent with values needed to fit the data in a syste@s the permeabilitik,, the porosityn, the characteristic vis-
with small disorder. The importance of our results lies incous lengthA, and the tortuositya... For smooth porous
demonstrating that mild fluctuations from a completely “ho-media the ratio B/(a..nA?) =1 [see, e.g., Z4
mogeneous” porous medium have clear effects on the basic The permeability is defined adg=n(v)L; and is com-
observations of transport in these media. This study indicatgguted by solving the Stokes problenV?v,— V p+e=0, and
that the physical picture that is the basis of the classical ADEV -vy=0, the quantitye being a unit force vector. No-slip
leads to an incomplete description of transport phenomenboundary conditions at the pore walls, and periodicity gf
even in “homogeneous” media, whereas the proposed CTRWndp, are prescribed. It is logical to introduce the permeabil-

description can describe this kind of transport. ity in the denominator as the higher the medium permeabil-
1.5
14
1.3
FIG. 5. Coefficienty vs the dimensionless ve-
1.2 locity (v)/v,, for a set of 48 experimental break-
SR through curves on short columns filled with well-
) sorted granular materials of different grain size.
1 The slope of the curve sets the value for param-
eter a. The linear regression analysis yields
0.9 =1.0071 and an intercept value equal o
0.8 : ; | =0.1069.
: : : Cbestfit ——
0.7 \ \ | |
0.7 0.8 0.9 1 1.1 1.2 1.3 14
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ity, the higher the probability of a particle transition. The tortuosity is defined as,={|v..|?/|(v..)|*> 1. We re-

The characteristic viscous length is defined as\ 2/ quire the tortuosity to account for the fact that particle tran-
=[|v..|?dS/ f]v.|?dV, where the latter integral describes a sitions do not occur over straight lines along the principal
velocity-weighted surfag®)-to-volumeV) ratio. The veloc-  direction of flow.
ity field v,,=V ¢ follows from the potential problenVZy For porous media whose pore-fluid surfaces present sharp
=0, with Neumann boundary conditions on the fluid-solidsingularities due, for instance, to the presence of clays, the
interface and periodicity on the inlet-outlet surfaces of theratio 8,/(«..nA?) deviates significantly from the value 1
averaging cell. The characteristic viscous length is the “natuf25,26. We argue that, for these particular geometries, the
ral” length scale for the permeability. slopea of the regression line might deviate accordingly.
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