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Breakthrough curves(BTC) of a passive tracer in macroscopically homogeneous granular materials(well-
sorted, unconsolidated sands or glass beads) were measured in a series of column experiments. The early and
late arrival times are observed to differ systematically from theoretical predictions based on solution of the
advective-dispersion equation for uniform porous media. We propose that subtle and residual pore-scale dis-
order effects in the porous media can account for these observations. We determine an ensemble-averaged
distribution of particle transfer rates(based on a master equation for the local flux-averaged concentration)
which incorporates these effects, and utilize it to calculate BTC that are in excellent agreement with the entire
series of observations. Theoretical prediction of the dependence of the effective macroscopic parameters on
measurable quantities is also in excellent agreement with the observations.
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I. INTRODUCTION

Since the seminal study of Taylor[1], the transport of a
passive tracer in macroscopically homogeneous granular ma-
terials, under an advecting steady flow, has been treated by
analogy to the classical(Fickian) diffusion problem in a ho-
mogeneous fluid. As a consequence, the advection-dispersion
equation(ADE),

n
]

]t
csy,td = − ¹ · fqcsy,td − D ¹ csy,tdg, s1d

has long been regarded as the correct model to describe this
kind of transport. In(1), c is the resident fluid concentration,
n is porosity,q=nkvl is volumetric fluid flux per unit area,
kvl the average fluid velocity,t is time, y is distance, andD
is the hydrodynamic dispersion coefficient.

While the ADE has been documented to provide “aver-
age,” large-scale descriptions of tracer migration in porous
media, non-Fickian(or “anomalous”) transport patterns are
observed frequently. Such patterns are usually distinguished
by early arrival and late time tails in breakthrough curves
which differ from those described by the ADE. Anomalous
dispersion of a passive tracer in porous media has often been
associated with the presence of large scale heterogeneities.
However, Scheidegger[2] already noted, nearly 45 years
ago, that as compared to calculations from the classical ADE
model, systematic deviations were observed in the early ar-
rival times and long-time tails of breakthrough curves(BTC)
measured in “homogeneous” sandstones.

The question of the scale or conditions under which a
porous medium can be considered “homogeneous” therefore
arises naturally. For example, the existence of preferential

flow paths and non-Fickian tracer transport even in small
scale, “homogeneously” packed column experiments was
shown clearly by, e.g., Hoffmanet al. [3] and Oswaldet al.
[4]. Similar behavior was demonstrated in meter scale flow
cells by Silliman and Simpson[5] and Levy and Berkowitz
[6]. A recent reanalysis[7] of the data reported in[2], as well
as from other experiments on tracer transport in small scale,
natural (“homogeneous”) soil columns[8,9], further exam-
ined and quantified the occurrence of non-Fickian transport.

We argue that in “uniform” porous media, the ADE
framework may provide a good description of the mean ar-
rival time (which correlates to the mean Stokes flowkvl), but
cannot account for a precise description of tracer transport
(e.g., early and late tracer arrival times) due to fluctuations in
mean behavior. The key issue is to recognize that short-range
“geometrical” heterogeneity in a porous medium leads also
to short-range spatial variability in the microscopic velocity
field vsyd of the liquid that carries the tracer. These latter
effects are eventually “averaged out” in, e.g., sufficiently
long columnsL of granular matter:L...dm, wheredm is a
characteristic diameter of the individual grains. However, in
a large range, whereL@dm, these fluctuations can produce
the measurably systematic deviations from the BTC de-
scribed by the ADE.

In the present work, we have measured the transport of a
passive tracer in macroscopically “homogeneous” granular
materials, for a range of steady advective flow rates and for a
series of different well-sorted, unconsolidated sands and
glass beads. We demonstrate that even microscopic changes
in the velocity distribution—in this case, given by relative
changes in the random fluctuations around a mean liquid
velocity in a macroscopically homogeneous porous
medium—can lead to distinct, quantifiable patterns in the
early arrival times and long-time tailing behavior. We also
show that this behavior cannot be quantified by the classical
ADE model. It is important to note here that we use exact
solutions for the ADE(and our proposed model) that account
explicitly for the length of the column and the appropriate
inlet and outlet boundary conditions. Therefore, our fits with
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the ADE are not affected by fitting artifacts of the classical
analytical ADE solution for an infinite length column.

We approach our theoretical analysis of the subtle effects
of pore-scale disorder within a framework that has been
highly successful in accounting for anomalous transport in
strongly heterogeneous media—the continuous time random
walk (CTRW) formalism [10–12]. In this context, we have
developed [13] generalized transport equations with the
CTRW theory, and shown the ADE to be a highly con-
strained subset of this theory. The CTRW is characterized by
css,td, the probability rate of a local displacements at tran-
sition timet. In many instances, it is possible to assume that
the transition rate probability can be applied in the uncoupled
form css,td=pssdcstd, wherepssd is the probability distribu-
tion of the length of the jumps andcstd is the probability rate
for a transition timet between sites.

In this contribution, we consider the determination ofcstd
for the mildly disordered porous media used in our experi-
ments. We develop a physical model based on a master equa-
tion (ME) for the flux concentration, containing the explicit
pore-scale transitions. In Sec. II we present our experimental
results and the comparison to the ADE predictions. In Sec.
III we derive thecss,td we use in the generalized transport
equation computations of BTC, and in Sec. IV we compare
these results to the experimental ones.

II. TRANSPORT EXPERIMENTS IN HOMOGENEOUS
GRANULAR MATERIALS

We performed a series of tracer breakthrough experiments
in a one-dimensional(1D) flow field, on uniformly packed
columns of two different lengths. The filling material was
well-rounded quartz sand with minimal surface coatings
(UNIMIN Corporation, USA). Three grain sizes were used,
namely fine, medium, and coarse sand, with average grain
diameters of 0.231, 0.532, and 1.105 mm, respectively. Glass
beads with an average diameter of 4.0 mm were also used.

The experiments used two “short” columns(one of length
19.70 cm and 2.478-cm internal diameter, and the other of
length 19.85 cm and 2.512-cm internal diameter), and two
“long” columns(with lengths 101.0 and 101.2 cm, and inter-
nal diameter of 2.785 cm). The inlet and outlet ends of each
column were separated from the porous medium by thin ny-
lon meshes with hydraulic conductivity larger than those of
the sand and glass beads. Small open volumes between the
meshes and the column closure caps served to promote tracer
mixing and to further dampen subtle pulses in the injected
liquid caused by the peristaltic pump.

Each sand packing was carried out under saturated condi-
tions, with (sequentially) small amounts of sand being
poured through water and stirred with a thin stick to avoid air
entrapment. In addition, the sand was compacted and the
column was shaken frequently during the process of packing.
The porosity was controlled by weighing the amount of sand
packed into a given column volume, allowing for different
densities of the sands. This methodology ensured that the
columns were as uniformly saturated and as homogeneous as
possible.

The flow rate of the injected water and tracer(sodium
chloride) was controlled by a peristaltic pump(Master
FLEX, USA) together with a flow dampener. A T joint con-
nected salt water and fresh water reservoirs, which enabled
an immediate switch over between the different water sup-
plies without interrupting the flow. In each experiment, fresh
water was used to initiate and stabilize the flow, and to cali-
brate the background concentration. Salt water was then in-
jected to displace the fresh water and to determine break-
through curves. The effluent conductivity was measured over
time with an electrical conductivity(EC) meter(TWIN, Ja-
pan), with maximum measurement error of 1%, and then
converted to tracer concentration values by using calibration
curves. All tracer experiments were run until the effluent
conductivity was steady and equal to the inflow concentra-
tion, at a constant room temperature of 23 °C. In all experi-
ments, fresh water was prepared from boiled, deionized wa-
ter; salt water contained 500 mg/L NaCl.

To maximize the resolution and accuracy of the measure-
ments, “dead volumes” of fluid(containing both tube volume
and inlet volume of column) were accounted for in the treat-
ment of the measurements. For this purpose, a neutral-
colored dye was injected to estimate the dead volume be-
tween source water switchover and column inlet: the time of
flow through this switchover was deducted from the mea-
sured breakthrough times at the column outlet. The outlet
volume of the columns was also minimized to increase the
accuracy of the conductivity measurements of the effluent.
The colored dye was also used to ensure that fluctuations in
the flow rate could be considered negligible with regard to
the outlet concentration measurements.

Figure 1 shows a typical BTC(normalized flux-averaged
concentrationj versus timet) for a short column filled with
fine sand. It can be observed that while the mean arrival time
is approximatively matched by the fitted ADE model, the
predicted early and late arrival times deviate from the data.
These deviations are found to be systematic and of compa-
rable order of magnitude for the entire set of(48) short col-
umn experiments. Also shown in Fig. 1 is a fit to the data
using a CTRW formulation to be derived and discussed be-
low. Similarly, Fig. 2 shows a typical BTC for a long column
filled with coarse sand. Here, it is evident that for this par-
ticular column length and packing, the ADE model correctly
predicts the Fickian evolution of the experiment.

From this analysis, we conclude that there is a transition
between the anomalous behavior observed in the short col-
umn experiments and the Fickian behavior characteristic of
the long column. These considerations on length scales must
of course be taken in relative terms. The ratio of the total
length of the column to the diameter of the characteristic
disorder(the diameter of the grains) is equal toL /dm=870
for the short column(fine sand) experiment, and it is of the
same order of magnitude for the long column(coarse sand)
experiment,L /dm=909. The degree of the heterogeneity is
therefore comparable for the two cases. However, as the
volumetric fluid fluxes are also comparable(Q=6.717
310−7 and 7.8760310−7 m3/min for the short and long col-
umns, respectively), the residence time of the tracer in the
long columnst̂,265 mind is more than five times larger than
that for the short columnst̂,53.7 mind. The relative resi-
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dence time is ultimately what governs the transition from
anomalous to a Fickian behavior. A rigorous, quantitative
treatment of this anomalous behavior and the evolution to-
wards Fickian behavior is described in the next section.

III. THE PHYSICS OF THE PROBLEM

A. Derivation of the c„t…

The complex nature of the paths traveled by the tracer is
governed by the fluctuations of the Stokes velocity fieldvsyd
around its average valuekvsydl due to the local heterogene-

ities in the pore volume. It is expedient to consider local
averages of the key quantities and retain a statistical charac-
terization of these fluctuations. We consider a master equa-
tion for the flux-averaged concentrationusy,td=vsydQsy,td,
whereQsy,td is the normalized resident concentration,

]usy,td
]t

= − o
y8

wsy8,ydusy,td + o
y8

wsy,y8dusy8,td, s2d

wherewsy,y8d is the transition rate of tracer “particles” from
y8 to y in a single realization(units of t−1) and the sum over
y is, in principle, over the pores of the fluid volume. The

FIG. 1. Comparison of measured vs fitted
breakthrough curves for a typical short column
experiment. The quantityj represents the normal-
ized flux-averaged concentration. Dots: measured
chloride breakthrough curve, for a fine sand:dm

=0.231 mm. Measured porosityn=0.3228. Col-
umn length L=19.85 cm. Section area=4.956
310−4 m2. Volumetric fluid flow Q=6.717
310−7 m3/min. Dashed line: best ADE model
fit: kvl=4.917310−3 m/min, D=3.2363
310−6 m2/min. Solid line: best CTRW fit:vc

=4.0389310−3 m/min, Dc=1.1601
310−6 m2/min, h=0.9212. The lower figure
shows the quantitys1− jd in logarithmic units to
emphasize the long-time tail.

FIG. 2. Comparison of measured vs fitted
breakthrough curves for a typical long column
experiment. The quantityj represents the normal-
ized flux-averaged concentration. Dots: measured
chloride breakthrough curve, for a coarse sand:
dm=1.105 mm. Measured porosityn=0.3262.
Column length L=101.2 cm. Section area
=6.0917310−4 m2. Volumetric fluid flow Q
=7.8760310−7 m3/min. Dashed line: best ADE
model fit: kvl=3.8072310−3 m/min, D=2.7793
310−6 m2/min.
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procedure to account for the statistics of the local fluctua-
tions requires the use of a local average over some volume
Vcell;s4/3dpr3, where kfsydl;1/VcelleVcell

fsy+§dd§.
Clearly, r is proportional to the characteristic length of the
spatial particle transitions,,=ospssds. This coarse-graining
procedure amounts to shifting the length scale from the in-
terpore distance to theVcell radius,r, and to designating an
effective site density(see below). The probability ratecstd is
related to the derivative of the ensemble-averaged part of the
outgoing contribution in the ME for the concentration[see,
e.g.,[14]].

The physical model is determined by the expression for
the transition ratewsy8 ,yd which we write aswsy+sd, where
s is the distance to the appropriately averaged sites(i.e., con-
tained inVcell) of the configuration. The particles are trans-
ported by the flow, hence it is reasonable to assume

wsy + sd =
a

8

vsy + sd
,

+
b

6t̄
expS−

s

l
D , s3d

with l a characteristic diffusion length, andt̄ a characteristic
“relaxation time for diffusion.” Note that the diffusion con-
tribution decays exponentially with the distance from the
considered point(Fickian diffusion). We incorporate all the
remaining uncertainty in the expression forw in the two
numerical constantsa and b, which are determined experi-
mentally. The factor 1/6 is introduced for convenience to
simplify the forthcoming algebra. Further discussion on the
connection betweenwsy+sd andvsy+sd, and on the origin of
the 1/8 coefficient, is given in the Appendix.

Averaging the outgoing contribution of the ME in(2), we
can now write

−
d

dt
kQsy,tdvsydl = o

s

kQsy,tdvsydwsy + sdl, s4d

where we further assume that

kQsy,tdvsydl = kQsy,tdlkvsydl s5d

and

kQsy,tdF a

8,
vsydvsy + sd + vsyd

b

6t̄
expS−

s

l
DGl

= kQsy,tdlF a

8,
kvsydvsy + sdl + kvsydl

b

6t̄
expS−

s

l
DG .

s6d

We can then write(4) as

−
d

dt
kQsy,tdl =

kQsy,tdl
kvsydl o

s
F a

8,
kvsydvsy + sdl

+ kvsydl
b

6t̄
expS−

s

l
DG . s7d

The averaging volumeVcell is chosen to also contain the
fluctuations of the local Stokes velocity field, which is speci-
fied by d the correlation length(whered, r),

kvsydvsy + sdl = kvsyd2lexpS−
s

d
D . s8d

We assume that the diffusion lengthl,d. Substituting(8)
into (7) we have

−
d

dt
kQsy,tdl = kQsy,tdlSa

8
kvsydl

a0

,
+

b

6t̄
Do

s

expS−
s

d
D ,

s9d

where the ratioa0=kvsyd2l / kvsydl2 is known as the “static
tortuosity” [15–17] and for three-dimensional(3D) flow in-
side a straight tubea0 has the exact value 4/3. We assume
that the value ofa0 for our macroscopically homogeneous
porous medium remains of the order of 4/3, and we incor-
porate this uncertainty into the factora.

We can now solve the differential equation forkQsy,tdl to
obtain

kQsy,tdl = expF− tSa

6

kvsydl
,

+
b

6t̄
Do

s

expS−
s

d
DG .

s10d

We define the nondimensional timet;st / t̄dh /6 and the
“disorder parameter”h

h ; a
kvsydl

vc

+ b, s11d

where vc;, / t̄. The factorh /6 thus represents the natural
time scale of the process.

With the above definitions, we can rewrite(10) as

kQsy,tdl = expF− to
s

expS−
s

d
DG . s12d

Taking the ensemble average ofkQsy,tdl (indicated by the
operator{ }) over all possible effective sites

hkQsy,tdlj = HexpF− to
s

exps− si/ddGJ s13d

yields

hkQsy,tdlj =E
V

d3s1

V
. . .E

V

d3sN

V
expF− to

i=1

N

exps− si/ddG ,

s14d

where the volumeV is the total volume, i.e.,V=NVcell, with
N being the number of effective sites. The definition of an
effective site is one that is separated on average by
s3Vcell/4pd1/3 from a neighboring one.

Rewriting (14) as

hkQsy,tdlj =E
V

d3s1

V
. . .E

V

d3sN

V p
i=1

N

expf− t exps− si/ddg,

s15d

and adding and subtracting 1 on the right-hand side gives
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hkQsy,tdlj = p
i=1

N F1 −E
V

d3si

V
s1 − exp„− t exps− si/dd…dG .

s16d

We then multiply and divide byN to get

hkQsy,tdlj = p
i=1

N F1 −
N

N

1

V

3E
V

d3sis1 − exp„− t exps− si/dd…dG .

s17d

At this point we assume the ergodic hypothesis for which all
the sites are equivalent to get

hkQsy,tdlj = F1 −
N

NV
E

V

d3sS1 − expX− t expS−
s

d
DCDGN

.

s18d

Taking the limit to the number of sitesN→`,

hkQsy,tdlj = expF−
N

V
E

V

d3sS1 − expX− t expS−
s

d
DCDG .

s19d

We consider an isotropic system and we make the change of
variablesx=s/d,

hkQsy,tdlj

= expF−
4pd3N

V
E

0

`

s1 − exp„− t exps− xd…dx2dxG .

s20d

Anticipating the outcome of the experimental results, we
make theansatzthat the radiusr of the sphere of volume
Vcell=s4/3dpr3 is proportional to the correlation lengthd
through the nondimensional rescaling timeh /6 defined fol-
lowing (11), i.e., r ;6d /h. As discussed earlier, the radiusr
is proportional to,, justifying the introduction of theh pa-
rameter. It will be seen from the experiments that the fluid
velocity kvl is of the order of the transport velocityvc, i.e.,
h,1. The averaging radiusr therefore encompasses several
correlation lengthsd.

We thus rewrite(20) as

hkQsy,tdlj = expF−
4pr3N

V
Sh

6
D3

3E
0

`

s1 − exp„− t exps− xd…dx2dxG . s21d

In the range 0.8,h,1.5, we can use the approximation
sh /6d3<1/6sh+2.3d with a relative error of 2310−3. We
also incorporate the constant 2.3 into the definition ofb in
(11). From the definition of r we have thatV=NVcell
=N4/3pr3, hence

hkQsy,tdlj = expF−
h

2
E

0

`

s1 − exp„− t exps− xd…dx2dxG .

s22d

The integral in(22) can be expressed as[14]

hkQsy,tdlj = expF−
h

2

t

3
S−

d3

da3std−agsa,tdD
a=1
G , s23d

whereg is the incomplete Gamma function[18]. Equation
(23) is equal to

hkQsy,tdlj = expF− ht4F4F1,1,1,1

2,2,2,2
;− tGG , s24d

wherepFq is the generalized hypergeometric function defined
as

pFqFa1,a2, . . . ,ap

b1,b2, . . . ,bq
;xG = o

0

`
sa1dksa2dk . . . sapdk

sb1dksb2dk . . . sbqdk

xk

k!
, s25d

and sadk=Gsa+kd /Gsad=asa+1d . . .sa+k−1d is the Poch-
hammer symbol, also known as the rising factorial.

The normalized transition probabilitycstd is defined by
[14]

6t̄

h
cstd ; −

dhkQsy,tdlj
dt

. s26d

Developing the derivative in(26) we obtain

6t̄

h
cstd = h3F3F1,1,1

2,2,2
;− tGe−ht 4F4F1,1,1,1

2,2,2,2
;−tG . s27d

The hypergeometric functions3F3 and 4F4 are always posi-
tive and tend for small times to the value 1, reducingcstd to
a pure exponential. The limits of these functions fort→`
are also constants equal top2/12 andzs3d /3, for 3F3 and

4F4, respectively, with thez function defined as in Abram-
owitz and Stegun[18]. We recall that the spreading behavior
is purely Fickian when thecstd is a pure exponential. Thus,
Eq. (27) can actually account for the transition from a purely
diffusive regime(at extremely small times when the tracer
does not yet “see” the microscopic heterogeneities around
the spreading source) to (eventually) another “homogenized”
regime in which the length scales involved in the overall
transport are much larger than the correlation length of the
disordered porous system. The regime of most practical in-
terest, however, lies in the broad transition between these
two extremes in which anomalous transport prevails.

An illustration of thecstd behavior is given in Fig. 3 for
several values of theh parameter. We note thatcstd ap-
proaches an exponential behavior ash increases, whilst
smaller values ofh are associated with systems with higher
degrees of disorder. In terms of(11), values ofh of the order
of unity correspond to a physical situation in whichvc is of
the order of magnitude of the average pore velocitykvl.
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B. The generalized advection-dispersion
equation with memory

It can be shown[13,19] that the ensemble average of the
ME for the resident concentration can be written as a gener-
alized ME that is equivalent to a CTRW. Dentzet al. [20]
showed that the CTRW formalism can be described effi-
ciently in terms of a partial differential equation with a
memory term

nfkuc̃sy,udl − kc0sydlg = − M̃sud ¹ · fqckc̃sy,udl

− Dc ¹ kc̃sy,udlg. s28d

The memory functionM̃sud is

M̃sud = t̄u
c̃sud

1 − c̃sud
, s29d

where c̃sud is given by the Laplace transform of(27) (u is
the Laplace parameter), and

qc =
1

t̄
o

s

pssds= nvcsyd, Dc =
1

t̄
o

s

1

2
pssdss; acqc,

s30d

where the tensor

ac =
os

1

2
pssdss

uos
pssdsu

, s31d

has dimension of length. The Laplace transform of thecstd
in (27) is evaluated numerically for all values ofu using an
adaptive Clenshaw-Curtis quadrature scheme[21]. In the

limit of cstd→e−t, then M̃sud=const and(28) is formally
equivalent to the classical ADE in(1). This can be seen
easily by substituting the Laplace transform of the pure ex-

ponentialc̃sud=s1+ud−1 into (29) to obtainM̃sud=1.
For a 1D system, given a constant flux-boundary condi-

tion at the inlet, i.e.,j̃ ;M̃vsc̃−ac]c̃/]yd=u−1, at y=0, a
natural boundary condition at the outlet, i.e.,]c̃/]y=0 at y
=L;1, and an initial conditionc0syd=0, Eq.(28) admits the
exact analytical solution

j̃sud

=
1

u

2zexpS1

2
sac

−1 + zdD
fexpszdsz+ ac

−1 + 2u/sM̃vcdd + sz− ac
−1 − 2u/sM̃vcddg

,

s32d

where

z=
1

ac
Î1 +

4uac

M̃vc

. s33d

Equation(32) is then numerically inverted to the time do-
main by means of an inverse Laplace transform algorithm
[22,23]. A series of plots for different values of the nondi-
mensional parameterh are given in Fig. 4, for nondimen-
sional velocity and dispersivity equal tovc /L=1, andac /L
=0.05, respectively.

IV. DISCUSSION

We now analyze the 48 short column experimental BTCs.
Fitting numerical solutions of(32) to these experimental
BTCs, we obtained independently the parametersvc, Dc, and
h corresponding to thecstd in (27), and the parameterskvl
and D for the ADE in (1) (i.e., the solution of(32) for

M̃sud=1). Note that, as mentioned in the Introduction, Eq.
(32) is exact for the boundary conditions and system geom-
etry of these experiments.

In Fig. 1, we show a typical example of the fit obtained by
means of(28). It can be seen that the solution of(28) with a
memory function defined by thecstd in (27) captures all of
the “anomalous” features(in contrast to the ADE model) and
also better describes the position of the mean arrival.

In Fig. 5 we plot the value of the disorder parameterh
against the ratiokvl /vc for the set of 48 BTCs: it can be seen
that the prediction of(11) is clearly satisfied by our experi-
ments. The fitted values ofh range between 0.8 and 1.5. This
range of values is characteristic of a weak disorder. The re-
gression line plotted in Fig. 5 has a slopea=1.0071 and an
interceptb=0.1069. We note that the value ofh does not
show any specific dependence on the values of mean grain

FIG. 3. Evolution of the dimensionless transi-
tion probabilitys6t̄ /hdcstd vs dimensionless time
t in (27) for different values of theh parameter.
The dashed line represents the exponential limit
of the function forh=1.5.
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size dm, porosity n, tortuosity a`, characteristic viscous
length L, or permeabilityk0 (as defined in the Appendix).
These factors only enter implicitly into the determination of
a andb. The fact thata<1 is consistent with our choice of
constants in(3). These findings show that the parametera is
not scale dependent and should therefore depend in a univer-
sal way on a combination of the aforementioned parameters,
for instance,a<8k0/ snL2a`d, which for smooth porous me-
dia is typically in the order of unity[24]. The coefficientb
carries the information on the diffusion contribution to the
transition rates, so we expect to find different numerical val-
ues for different choices of the solute pure-diffusion coeffi-
cient.

The surprising robustness of the expression in(11) indi-
cates that the main dependence of theh parameter is effec-
tively on the ratio of fluid velocity to transport velocity,
kvl /vc. The approximations made in the determination ofh
are consistent with values needed to fit the data in a system
with small disorder. The importance of our results lies in
demonstrating that mild fluctuations from a completely “ho-
mogeneous” porous medium have clear effects on the basic
observations of transport in these media. This study indicates
that the physical picture that is the basis of the classical ADE
leads to an incomplete description of transport phenomena
even in “homogeneous” media, whereas the proposed CTRW
description can describe this kind of transport.
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APPENDIX

In the definition of thewsy+sd the main dependence is on
the fluid velocityvsy+sd. However, this “forcing term” must
be rescaled with a characteristic length of the spatial transi-
tions; this length depends on the assumed idealization of the
porous medium. For example, for a medium consisting of a
network of pores and straight tubes, the length, is a charac-
teristic distance of the interpore distance, i.e., the length of
the tubes. Because the rescaling is governed by,, the depen-
dence of the constanta is only on “averaged” quantities such
as the permeabilityk0, the porosityn, the characteristic vis-
cous lengthL, and the tortuositya`. For smooth porous
media the ratio 8k0/ sa`nL2d<1 [see, e.g., 24].

The permeability is defined ask0=nkv0lLy
2 and is com-

puted by solving the Stokes problemh¹2v0− ¹p+e=0, and
¹ ·v0=0, the quantitye being a unit force vector. No-slip
boundary conditions at the pore walls, and periodicity ofv0
andp, are prescribed. It is logical to introduce the permeabil-
ity in the denominator as the higher the medium permeabil-

FIG. 4. Breakthrough curves solutions of
(32), where the quantityj represents the normal-
ized flux-averaged concentration, using the
transition-probability functioncstd in (27), vs
nondimensional timet= th / t̄ for different values
of the disorder parameterh, with vc /L=1 and
ac /L=0.05.

FIG. 5. Coefficienth vs the dimensionless ve-
locity kvl /vc for a set of 48 experimental break-
through curves on short columns filled with well-
sorted granular materials of different grain size.
The slope of the curve sets the value for param-
eter a. The linear regression analysis yieldsa
=1.0071 and an intercept value equal tob
=0.1069.
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ity, the higher the probability of a particle transition.
The characteristic viscous length is defined as 2/L

=euv`u2dS/euv`u2dV, where the latter integral describes a
velocity-weighted surface(S)-to-volume(V) ratio. The veloc-
ity field v`= ¹c follows from the potential problem¹2c
=0, with Neumann boundary conditions on the fluid-solid
interface and periodicity on the inlet-outlet surfaces of the
averaging cell. The characteristic viscous length is the “natu-
ral” length scale for the permeability.

The tortuosity is defined asa`=kuv`u2l / ukv`lu2.1. We re-
quire the tortuosity to account for the fact that particle tran-
sitions do not occur over straight lines along the principal
direction of flow.

For porous media whose pore-fluid surfaces present sharp
singularities due, for instance, to the presence of clays, the
ratio 8k0/ sa`nL2d deviates significantly from the value 1
[25,26]. We argue that, for these particular geometries, the
slopea of the regression line might deviate accordingly.
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